3.634 \(\int \frac{x^7}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx\)

Optimal. Leaf size=158 \[ -\frac{3 a^2}{2 b^4 \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{3 a \left (a+b x^2\right ) \log \left (a+b x^2\right )}{2 b^4 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{x^2 \left (a+b x^2\right )}{2 b^3 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{a^3}{4 b^4 \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}} \]

[Out]

(-3*a^2)/(2*b^4*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + a^3/(4*b^4*(a + b*x^2)*Sqrt[a
^2 + 2*a*b*x^2 + b^2*x^4]) + (x^2*(a + b*x^2))/(2*b^3*Sqrt[a^2 + 2*a*b*x^2 + b^2
*x^4]) - (3*a*(a + b*x^2)*Log[a + b*x^2])/(2*b^4*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]
)

_______________________________________________________________________________________

Rubi [A]  time = 0.310168, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115 \[ -\frac{3 a^2}{2 b^4 \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{3 a \left (a+b x^2\right ) \log \left (a+b x^2\right )}{2 b^4 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{x^2 \left (a+b x^2\right )}{2 b^3 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{a^3}{4 b^4 \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}} \]

Antiderivative was successfully verified.

[In]  Int[x^7/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]

[Out]

(-3*a^2)/(2*b^4*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + a^3/(4*b^4*(a + b*x^2)*Sqrt[a
^2 + 2*a*b*x^2 + b^2*x^4]) + (x^2*(a + b*x^2))/(2*b^3*Sqrt[a^2 + 2*a*b*x^2 + b^2
*x^4]) - (3*a*(a + b*x^2)*Log[a + b*x^2])/(2*b^4*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]
)

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 24.0764, size = 141, normalized size = 0.89 \[ \frac{a x^{4} \left (a + b x^{2}\right )}{4 b^{2} \left (a^{2} + 2 a b x^{2} + b^{2} x^{4}\right )^{\frac{3}{2}}} - \frac{3 a \left (a + b x^{2}\right ) \log{\left (a + b x^{2} \right )}}{2 b^{4} \sqrt{a^{2} + 2 a b x^{2} + b^{2} x^{4}}} - \frac{x^{4}}{b^{2} \sqrt{a^{2} + 2 a b x^{2} + b^{2} x^{4}}} + \frac{3 \sqrt{a^{2} + 2 a b x^{2} + b^{2} x^{4}}}{2 b^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**7/(b**2*x**4+2*a*b*x**2+a**2)**(3/2),x)

[Out]

a*x**4*(a + b*x**2)/(4*b**2*(a**2 + 2*a*b*x**2 + b**2*x**4)**(3/2)) - 3*a*(a + b
*x**2)*log(a + b*x**2)/(2*b**4*sqrt(a**2 + 2*a*b*x**2 + b**2*x**4)) - x**4/(b**2
*sqrt(a**2 + 2*a*b*x**2 + b**2*x**4)) + 3*sqrt(a**2 + 2*a*b*x**2 + b**2*x**4)/(2
*b**4)

_______________________________________________________________________________________

Mathematica [A]  time = 0.0500946, size = 81, normalized size = 0.51 \[ \frac{-5 a^3-4 a^2 b x^2+4 a b^2 x^4-6 a \left (a+b x^2\right )^2 \log \left (a+b x^2\right )+2 b^3 x^6}{4 b^4 \left (a+b x^2\right ) \sqrt{\left (a+b x^2\right )^2}} \]

Antiderivative was successfully verified.

[In]  Integrate[x^7/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]

[Out]

(-5*a^3 - 4*a^2*b*x^2 + 4*a*b^2*x^4 + 2*b^3*x^6 - 6*a*(a + b*x^2)^2*Log[a + b*x^
2])/(4*b^4*(a + b*x^2)*Sqrt[(a + b*x^2)^2])

_______________________________________________________________________________________

Maple [A]  time = 0.024, size = 103, normalized size = 0.7 \[ -{\frac{ \left ( -2\,{b}^{3}{x}^{6}+6\,\ln \left ( b{x}^{2}+a \right ){x}^{4}a{b}^{2}-4\,a{x}^{4}{b}^{2}+12\,\ln \left ( b{x}^{2}+a \right ){x}^{2}{a}^{2}b+4\,{a}^{2}b{x}^{2}+6\,\ln \left ( b{x}^{2}+a \right ){a}^{3}+5\,{a}^{3} \right ) \left ( b{x}^{2}+a \right ) }{4\,{b}^{4}} \left ( \left ( b{x}^{2}+a \right ) ^{2} \right ) ^{-{\frac{3}{2}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^7/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x)

[Out]

-1/4*(-2*b^3*x^6+6*ln(b*x^2+a)*x^4*a*b^2-4*a*x^4*b^2+12*ln(b*x^2+a)*x^2*a^2*b+4*
a^2*b*x^2+6*ln(b*x^2+a)*a^3+5*a^3)*(b*x^2+a)/b^4/((b*x^2+a)^2)^(3/2)

_______________________________________________________________________________________

Maxima [A]  time = 0.691343, size = 198, normalized size = 1.25 \[ \frac{x^{4}}{2 \, \sqrt{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}} b^{2}} - \frac{3 \, a^{2} x^{2}}{{\left (b^{2}\right )}^{\frac{5}{2}}{\left (x^{2} + \frac{a}{b}\right )}^{2}} - \frac{3 \, a \log \left (x^{2} + \frac{a}{b}\right )}{2 \,{\left (b^{2}\right )}^{\frac{3}{2}} b} - \frac{9 \, a^{3} b}{4 \,{\left (b^{2}\right )}^{\frac{7}{2}}{\left (x^{2} + \frac{a}{b}\right )}^{2}} + \frac{a^{2}}{\sqrt{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}} b^{4}} - \frac{a^{3}}{2 \,{\left (b^{2}\right )}^{\frac{3}{2}}{\left (x^{2} + \frac{a}{b}\right )}^{2} b^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^7/(b^2*x^4 + 2*a*b*x^2 + a^2)^(3/2),x, algorithm="maxima")

[Out]

1/2*x^4/(sqrt(b^2*x^4 + 2*a*b*x^2 + a^2)*b^2) - 3*a^2*x^2/((b^2)^(5/2)*(x^2 + a/
b)^2) - 3/2*a*log(x^2 + a/b)/((b^2)^(3/2)*b) - 9/4*a^3*b/((b^2)^(7/2)*(x^2 + a/b
)^2) + a^2/(sqrt(b^2*x^4 + 2*a*b*x^2 + a^2)*b^4) - 1/2*a^3/((b^2)^(3/2)*(x^2 + a
/b)^2*b^3)

_______________________________________________________________________________________

Fricas [A]  time = 0.261056, size = 123, normalized size = 0.78 \[ \frac{2 \, b^{3} x^{6} + 4 \, a b^{2} x^{4} - 4 \, a^{2} b x^{2} - 5 \, a^{3} - 6 \,{\left (a b^{2} x^{4} + 2 \, a^{2} b x^{2} + a^{3}\right )} \log \left (b x^{2} + a\right )}{4 \,{\left (b^{6} x^{4} + 2 \, a b^{5} x^{2} + a^{2} b^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^7/(b^2*x^4 + 2*a*b*x^2 + a^2)^(3/2),x, algorithm="fricas")

[Out]

1/4*(2*b^3*x^6 + 4*a*b^2*x^4 - 4*a^2*b*x^2 - 5*a^3 - 6*(a*b^2*x^4 + 2*a^2*b*x^2
+ a^3)*log(b*x^2 + a))/(b^6*x^4 + 2*a*b^5*x^2 + a^2*b^4)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{7}}{\left (\left (a + b x^{2}\right )^{2}\right )^{\frac{3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**7/(b**2*x**4+2*a*b*x**2+a**2)**(3/2),x)

[Out]

Integral(x**7/((a + b*x**2)**2)**(3/2), x)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.639064, size = 4, normalized size = 0.03 \[ \mathit{sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^7/(b^2*x^4 + 2*a*b*x^2 + a^2)^(3/2),x, algorithm="giac")

[Out]

sage0*x